Kontakt

Mountain Flyers 80 Ltd.
Flughafen / Hangar 7
CH-3123 Belp

E-Mail schreiben

Aerodynamik

Grundlagen Aerodynamik

Bevor wir in die Aerodynamik der Helikopter einsteigen können, sollten wir einige grundlegende aerodynamischen Prinzipien kennen: damit Flugzeuge, die schwerer als Luft sind, vom Boden abheben können, muss eine Kraft nach oben wirken, die mindestens so gross ist, wie das Gewicht des Flugzeuges. Diese Kraft nennt man Auftrieb und wird durch die Tragflächen erzeugt.

Die Tragflächen oder Flügel haben im Querschnitt eine bestimmte Form - das Profil. Es gibt eine Vielzahl verschiedener Profilarten, je nachdem welche Flugeigenschaften ein Flugzeug erreichen soll. Bewegt sich nun eine Tragfläche vorwärts, teilt das Profil den Luftstrom in einen unteren und einen oberen Teil.

 

Da die Luft durch die Wölbung um das Profil verdrängt wird, muss sie einen "weiteren Weg" zurücklegen, wodurch sich die Strömungsgeschwindigkeit erhöht. Nach dem Gesetz der Strömungslehre (Bernoulli-Gleichung) führt die Geschwindigkeitszunahme zu einer Reduktion des Drucks. Es entsteht auf der Oberfläche des Flügels ein "Sog". Da die obere und untere Seite des Profils eine unterschiedliche Wölbung aufweisen, wird auch ein unterschiedlicher "Sog" erzeugt. Bei einem vollsymetrischen Profil (hier ist ein halbsymmetrisches dargestellt) ist der Unterdruck auf der Flügeloberseite genau gleich gross wie auf der Unterseite.

 

Bei einem vollsymetrischen Profil (hier ist ein halbsymmetrisches dargestellt) ist der Unterdruck auf der Flügeloberseite genau gleich gross wie auf der Unterseite. Diese rein aerodynamischen Kräfte reichen noch nicht aus, um ein Flugzeug zum Fliegen zu bringen. Ein Flügel muss im Luftstrom leicht angestellt werden, wodurch die Luft nach unten abgelenkt wird, was zu einem Überdruck auf der Flügelunterseite führt, welcher den Gesamtauftrieb erhöht.

 

Dieser Anstellwinkel bewirkt zusätzlich eine Erhöhung des Unterdrucks auf der Oberseite, da die Luft einen noch weiteren Weg zurücklegen muss und dadurch stärker beschleunigt wird. Durch die Anstellung des Flügels wird aber auch der Luftwiderstand erhöht, was mit einer grösseren Leistung für den Vortrieb kompensiert werden muss. Grundsätzlich kann gesagt werden, dass der Auftrieb grösser wird je schneller sich das Flugzeug vorwärts bewegt. Gleichzeitig wird aber auch der Luftwiederstand erhöht. Aus diesem Grund besitzen Flugzeuge, welche nur langsam fliegen, dicke Profile, bei sehr schnellen Flugzeugen reichen schlanke Profile für die Erzeugung des Auftriebs aus.

 

 Der Anstellwinkel und die Geschwindigkeit können aber nicht beliebig erhöht werden da die Luftströmung auf der Oberseite abreissen kann. Das heisst die Strömung fliesst nicht mehr entlang dem Profil, sondern bildet Wirbel. Zuerst entstehen die Wirbel an der Austrittskante. Wird der Anstellwinkel weiter erhöht, bilden sich immer mehr Wirbel Richtung Eintrittskante, bis der Auftrieb nicht mehr ausreicht um das Flugzeug in der Luft zu halten. Dieser Flugzustand wird als Stall (engl.) bezeichnet und tritt vor allem dann auf, wenn das Flugzeug zu langsam fliegt.

Sobald die Strömung wieder sauber am Profil entlang fliesst, ist auch der notwendige Auftrieb wieder vorhanden und das Flugzeug fliegt wieder.

Unterschiede Helikopter / Flugzeug

Die Helikopter unterscheiden sich ganz grundsätzlich von den Flächenflugzeugen. Zwar wirken auch beim Helikopter aerodynamische Kräfte, diese sind aber viel schwieriger zu berechnen und zu erklären als bei einem Flugzeug. Dies vor allem weil beim sich drehenden Rotor zusätzliche Kräfte entstehen, welche bei einem Flächenflugzeug nicht vorhanden sind.

Bei einem Flugzeug mit Flügeln sind die Verhältnisse einigermassen klar. Der Vortrieb wird entweder durch einen Propeller oder ein Düsentriebwerk geliefert (ausser bei einem Segelflugzeug). Der Auftrieb wird durch die Flügel erzeugt und das Ganze wird mit Klappen, Ruder und Leitwerken gesteuert.

 

Anders sieht es beim Hubschrauber aus. Die sich drehenden Rotorblätter erzeugen, ähnlich wie bei einem Flügel, den Auftrieb und beschleunigen die Luft von oben nach unten. Dies geschieht indem bei allen Rotorblättern der Einstellwinkel (Winkel zwischen Rotorblattsehne und Helilängsachse) und dadurch auch der Anstellwinkel gleichzeitig erhöht wird. Dies wird als kollektive Blattverstellung bezeichnet. Dadurch wird die Luft, ähnlich wie bei einem Ventilator, nach unten "geblasen", der Gesamtauftrieb wird erhöht und der Helikopter beginnt zu steigen. Damit sich dieses Gefährt nach vorne bewegt, muss "nur" die Rotorebene nach vorne geneigt werden, so dass der Luftstrom durch den Rotor leicht nach hinten "geblasen" wird. Die Steuerung des Helikopters erfolgt nach dem gleichen Prinzip. Die Rotorebene wird in die Richtung geneigt wohin der Hubschrauber fliegen soll. Dies tönt sehr einfach, ist in Wirklichkeit aber ein sehr komplexer aerodynamischer Vorgang (davon sprechen wir später).

Gemeinerweise besagt ein physikalisches Gesetz (von Newton), dass eine Aktion eine Reaktion hervorruft. Dies bewirkt, dass sich der Rumpf des Helikopter entgegen der Drehrichtung des Rotors drehen möchte. Um dies zu verhindern wird bei den meisten Hubschraubern ein senkrecht drehender Rotor, der Heckrotor angebracht, welcher dieses Drehmoment ausgleicht. Mit diesem Heckrotor kann der Helikopter im Schwebeflug um die Hochachse gesteuert werden. Bei Konstruktionen mit zwei gegenläufig drehenden Hauptrotoren entsteht kein Drehmoment auf den Rumpf, resp. die Drehmomente der beiden Rotoren heben sich gegenseitig auf.

 

Schwebeflug

Gegenüber den Flächenflugzeugen können die Hubschrauber in der Luft stehen bleiben. Dies ist möglich, da die Hauptrotorblätter, wegen der Rotation immer durch die Luft angeströmt werden und dadurch den notwendigen Auftrieb liefern. Ein Flächenflugzeug erzeugt den Auftrieb erst, wenn eine genügend hohe Vorwärtsgeschwindigkeit erreicht ist. Im Schwebeflug werden wir, der Einfachheit halber, den Rotor als eine Scheibe betrachten und nicht die Verhältnisse am einzelnen Rotorblatt untersuchen. Dies ist möglich, da die aerodynamischen Kräfte einigermassen symmetrisch, über die gesamte Rotorscheibe verteilt sind. Damit sich ein Helikopter in der Luft halten kann, muss der Auftrieb genau gleich gross, wie sein Gewicht sein.

 

 

Wird nun bei allen Rotorblättern mit der kollektiven Blattverstellung gleichzeitig der Anstellwinkel erhöht, wird der Luftdurchsatz von oben nach unten durch die Rotorscheibe grösser, der Auftrieb nimmt zu und der Helikopter beginnt an Ort zu steigen.

 

Reduziert man den Anstellwinkel, wird der Gesamtauftrieb kleiner und der Hubschrauber beginnt sinngemäss zu sinken.

 

Wegen der Drehung des Hauptrotors entsteht ein Moment, welches bewirkt, dass sich der Rumpf entgegen der Drehrichtung des Hauptrotor dreht. Diese ungewollte Drehung wird durch den senkrecht stehenden Heckrotor korrigiert. Je grösser die Leistung des Hauptrotors ist, desto grösser ist auch das Drehmoment, und entsprechend mehr muss der Heckrotor leisten, um das Drehmoment zu korrigieren. Da der Heckrotor einen bestimmten horizontalen Schub produziert, hat der Helikopter die Tendenz sich in die entsprechende Richtung zu verschieben. Die Richtung ist abhängig von der Drehrichtung des Hauptrotors.

 

Dieses seitliche Versetzen muss wiederum mit dem Hauptrotor korrigiert werden. Der Luftstrom, auch Downwash genannt, wird leicht entgegen der Verschieberichtung geleitet, wodurch der Hubschrauber im stationären Schwebeflug bleibt. Die Kräfte des Haupt- und Heckrotors wirken bei vielen Hubschraubern nicht in der gleichen horizontalen Ebene. Aus diesem Grund kann es sein, dass der Helikopter im Schwebeflug nicht horizontal, sondern mit einer leichten Querlage da steht. Ob die Querlage links oder rechts ist, hängt primär wieder von der Drehrichtung des Hauptrotors ab.

 

Der Schwebeflug benötigt in der Regel mehr Leistung als der Vorwärtsflug. Eine wesentliche Rolle für die Leistungsfähigkeit spielt vor allem die Luftdichte. Je dichter die Luft, desto weniger muss der Antrieb leisten und desto mehr Gewicht kann der Hubschrauber tragen. Da mit zunehmender Flughöhe die Luftdichte abnimmt, muss das Gewicht des Helikopters reduziert werden, um ihn im Schwebeflug halten zu können. Grundsätzlich kann gesagt werden, je grösser die Aussentemperatur und je höher die Flughöhe ist, desto kleiner ist die Leistungsfähigkeit des Hubschrauber.

Einen weiteren Einfluss auf die Leistung hat der Downwash. Kann der Luftstrom ungehindert abfliessen, nennt man diesen Zustand Schwebeflug ausserhalb Bodeneffekt (hover out of ground effect, HOGE).

 

Schwebt der Helikopter in der Nähe des Bodens, nennt man dies Schwebeflug im Bodeneffekt (hover in ground effect, HIGE). Durch den Downwash, welcher zur Seite abgeleitet werden muss, entsteht eine Art Luftkissen. Dadurch benötigt der Hubschrauber weniger Leistung für den stationären Schwebeflug.

Je höher der Helikopter über dem Boden schwebt, desto kleiner ist der Einfluss des Bodeneffekts. Bei einer Schwebehöhe von ca 1.5x dem Rotordurchmesser ist kein Bodeneffekt mehr vorhanden. Einen grossen Einfluss auf den Bodeneffekt hat auch die Bodenbeschaffenheit und vor allem die Neigung des Geländes. Je stärker der Boden geneigt ist, desto besser kann der Downwash abfliessen und desto geringer ist der Bodeneffekt.

Vorwärtsflug

Der wohl grösste Vorteil der Hubschrauber liegt darin, dass sie sowohl schweben, als auch vorwärts fliegen können. Der Übergang vom Schwebe- in den Vorwärtsflug wird als so genannte Transition bezeichnet und ist ein aerodynamisch wie auch mechanisch äusserst komplizierter Vorgang.

Der Einfachheit halber werden wir den Rotor als eine Scheibe und nicht die aerodynamischen Verhältnisse am einzelnen Rotorblatt betrachten.Wie bereits erwähnt, wird die Luft im Schwebeflug von oben nach unten durch den Rotor beschleunigt. Damit der Hubschrauber in den Vorwärtsflug übergeht, muss die gesamte Rotorscheibe nach vorne geneigt werden.

 


 

 

Durch die Neigung nach vorne wird die Luft nicht mehr senkrecht nach unten, sondern nach hinten beschleunigt. Dadurch beginnt sich der Hubschrauber nach vorne zu bewegen. Da aber auch der Auftrieb nicht mehr senkrecht nach oben wirkt, muss die Leistung durch den Piloten in der Startphase leicht erhöht werden, um das richtige Verhältnis zwischen Auftrieb und Gewicht zu erreichen.

 

Durch die Rotation des Rotors entstehen im Vorwärtsflug unterschiedliche Anströmgeschwindigkeiten an den Rotorblättern. Das Rotorblatt, welches sich in Flugrichtung gesehen nach vorne bewegt wird als vorlaufendes Blatt, dasjenige welches sich nach hinten bewegt als rücklaufendes Blatt bezeichnet.

Die Anströmgeschwindigkeit ist abhängig von der Vorwärtsgeschwindigkeit, der Rotordrehzahl und dem Rotordurchmesser. Gehen wir davon aus, dass sich der Helikopter mit einer Geschwindigkeit von 200 km/h vorwärts bewegt und eine Blattspitzengeschwindigkeit von 750 km/h aufweist, entstehen folgende Verhältnisse am Rotor:

 

Das vorlaufende Blatt erreicht eine effektive Geschwindigkeit an der Blattspitze von 950 km/h (750 + 200). Diese Geschwindigkeit befindet sich bereits sehr nahe an der Schallgeschwindigkeit. An der Blattwurzel wird immer noch eine Anströmung mit über 200 km/h erreicht.

 

Das rücklaufende Blatt wird nur noch mit einer Geschwindigkeit von 550 km/h an der Blattspitze angeströmt (750 - 200). Die Anströmgeschwindigkeit nimmt ab, je näher man sich dem Rotationszentrum befindet. In der Gegend der Blattwurzel kann das Blatt sogar von hinten angeströmt werden und liefert demzufolge in diesem Bereich keinen Auftrieb mehr.

 

Der Auftrieb ist bekannterweise von der Anströmgeschwindigkeit und dem Anstellwinkel (nebst der Art des Profils) abhängig. Um einigermassen konstante Auftriebsverhältnisse über die gesamte Rotorscheibe zu erreichen, muss der Anstellwinkel während dem Umlauf des Blattes konstant verändert werden, da sich die Anströmgeschwindigkeit ja auch konstant ändert. Diese Verstellung des Anstellwinkels wird als zyklische Blattverstellung bezeichnet. Die Grenzen im Vorwärtsflug liegen bei heutigen Hubschrauber bei ca 400 km/h. Über dieser Geschwindigkeit würden sich grosse Teile des vorlaufende Blattes im Überschallbereich und ein grosser Bereich des rücklaufenden Blattes im Strömungsabriss befinden. Es gibt kein Flügelprofil, welches einen solch grossen Geschwindigkeitsbereich abdecken könnte.

dieses Dossier wurde entworfen von www.hubschrauber.li